High DR ADC for LHC Sarthak Kalani Last updated: 12/19/16 ## Aim: ADC design for The LHC (Large Hadron Collider), CERN - ADC specifications: - 14-bit design: To accommodate high dynamic range (16 bit) - 40MSps - To design: intermediate block - Increase accuracy to 14 bit (or enhance the dynamic range) #### Proposed architecture: Concept #### 4x Branch simulation #### 4x branch detailed schematic #### 4x branch output fft for tt 0°C case # 4x branch results summary @ 5MHz Input, 40MSPS - Simulations contain: - Transistor level transient simulation - Transient noise enabled - Tt, ff, ss, sf and fs corners simulated for 0°C and 50°C - Worst case (ss0) limited by both noise and distortion | Corner | SNR (dB) | SDR (dB) | SNDR (dB) | Power
(mW) | Vout _{pp} (diff)
(V) | |---------------------|----------|----------|-----------|---------------|----------------------------------| | tt 0 | 63.0 | 68.5 | 62.0 | 108 | 1.6 | | tt 50 | 62.3 | 74.0 | 62.0 | 111 | 1.6 | | ss 0
(worst THD) | 63.3 | 64.8 | 61.1 | 86 | 1.6 | | ff 50 | 62.4 | 82.7 | 62.4 | 121 | 1.6 | #### System level SNDR requirements - 1-bit provided by sample stage MDAC - 11-bit ADC is expected to provide 67.7dB SNDR - Overall 12-bit ADC requirement of 73dB obtained by combination of 1-bit output and 11-bit ADC - Ideally need 67dB SNDR at the MDAC output. - Currently worst case SNDR is 61dB. #### System level requirements satisfied! - 1-bit provided by sample stage MDAC - 61.1 dB SNDR obtained in the worst case simulation - After combining, SNDR obtained is 67.1dB Overall system level requirements are still satisfied #### Power consumption for 4x branch - For ss 0°C case: - Total power = 86mW - 4x Amplifier power = 58mW (67%) - Sampling Amplifier power = mW (33%) - Power required in 4x Amplifier to increase SNR #### DRE input requirements (1st Draft) | Requirement | Value | |--------------------------------|--| | Input Resistance to be driven | 250Ω single ended (1x and 4x branch having 500Ω each) | | Input Capacitance to be driven | 17pF Single ended (8pF each for 1x and 4x branch and 1pF for Sampling ADC) | | Vpp differential input | 1.6V | #### Future plans - Verify dc shift for 4x amplifier branch. - Implement 1x branch and verify. - Combine 1x and 4x branch and simulate SNDR. - Optimize individual components. ### Backup slides #### Sampled output waveform #### 4x Amplifier schematic ``` M1,M2 = 1920u/240n M4,M5 = 3840u/240n M12,M13 = 1920u/240n R1,R2 = 200k\Omega M3 = 1280u/240n M6, M7 = 5760u/240n M14,M15 = 640u/240n R3,R4 = 0(zero)\Omega M8,M9 = 1920u/240n C1,C2 = 1pF M10, M11 = 640u/240n Cload = 4pF C3,C4 = 14pF_{15} ``` #### 4x CMFB schematic #### Amplifier sizing steps - Started with 1mA current in each branch -> fixed W/L for tail current sources. - Length = 4x chosen for getting better g_m/g_{ds} ratio - For input transistor: Current mirror should not crush -> Higher W/L chosen (esp to account for ss case, with Vth = 550mV approx) - Finally multiplicity of the amplifier was increased to 16x to achieve noise requirements for 4x amplifier. #### 1x branch: Can we eliminate amplifier? Why was 1x amplifier needed? To equalize delays (4x and 1x branch) How to eliminate? Predict which branch to choose (1x or 4x) before 1st sample is chosen **Benefit: Power savings** ### Waveform for V_{FS} / 4 input to be made by point P (12.5nsec) for sample at A. #### - Choice: - Default = 1x gain. - Slew rate > 8V/µs -> Choose 1x gain for next 500nsec. #### Possible architecture